
Mission Control: An Open Source Usability Package for
GraphSpace in Python

Nick Franzese
Reed College

Portland, Oregon
nick.franzese@gmail.com

ABSTRACT
GraphSpace is a highly customizable platform for graph vi-
sualization with a suite of helpful features. These features
o�er great potential for a variety of academic uses, but ac-
tualization of this potential is dampened by usability issues.
Formatting data for visualization with GraphSpace can be
daunting for those unfamiliar with coding, and can be a
chore even for experienced programmers as each graph re-
quires custom built code to visualize. For this reason I cre-
ated Mission Control, an open source usability package for
GraphSpace in Python. The package aims to signi�cantly
lower the usability barrier of GraphSpace while maintaining
customizability. In the present paper I detail the user API
of the Mission Control package and showcase a few graphs
that I was able to visualize quickly and e�ortlessly through
the package.

Keywords
Visualization; Python; GraphSpace; Open Source; Usability

1. MOTIVATION
Graphspace is a highly customizable platform for graph

visualization with a suite of helpful features including cloud
sharing with privacy options, manual and automatic layout
control, a search feature for graph elements, graph tagging
for organizational purposes, and perhaps most importantly a
wide variety of visual graph attributes that can be controlled
by the user programmatically [3]. These features o�er great
potential for scientists and mathematicians in search of a
way to visualize graph data, but the actualization of this
potential is dampened by usability issues. In its current
state, GraphSpace utilizes a JSON parser in order to trans-
form user speci�ed visual attribute data into graphical form.
This means that a user must manually con�gure code to set
the visual attributes of each edge and node in the graph, con-
�gure a JSON �le accordingly, and then upload the JSON
�le to the GraphSpace server. Presently there exist tools [1]

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Bio331 Fall 2016, Reed College, Portland, OR
c 2016 Copyright held by the owner/author(s).

ACM ISBN X-XXXXX-XX-X/XX/XX.

DOI: XX.XXX/XXX X

to ease the processes of converting the visual attribute data
to JSON and uploading it to the server, but setting the vi-
sual attributes themselves requires customized code for each
new application. In order to set the visual attributes of the
nodes (edges are similar), the user must compile a nested
dictionary containing a key for each node whose value is
a dictionary whose keys are GraphSpace visual attributes.
The user must then set these GraphSpace visual attributes
to appropriate values in order to reect whatever trend in
the data they are attempting to visualize. The advantage of
this involved approach is that it is highly customizable, al-
lowing users to visualize multidimensional data in varied and
compelling ways. But this utility comes at a price. Format-
ting data for visualization with GraphSpace can be daunting
for those unfamiliar with coding, and can be a chore even
for experienced programmers.

For this reason I created Mission Control, an open source
usability package for GraphSpace in Python. Acknowledg-
ing that customizability is a key factor in GraphSpace‘s at-
tractiveness, I aimed to make Mission Control a convenient
framework for controlling GraphSpace‘s visual attributes whilst
maintaining the openness o�ered by its programmatic in-
terface. To this end I implemented features such as a dy-
namic text �le parser, a user-controlled system of default
visual attributes, intelligent data read in, and an object
class designed to dynamically handle the addition and re-
moval of user-de�ned data attributes. As a result of these
features, users of Mission Control can visualize multidimen-
sional graph data in a variety of ways and upload it to
GraphSpace with just a few operations.

2. METHODS
In order to establish a framework which can conveniently

pattern visual attributes according to data whilst preserv-
ing some of the programmatic customizability o�ered by
GraphSpace, I constructed an object class designed to han-
dle the dynamic addition and removal of user-de�ned data
attributes. I termed this class Generic Dynamic Object
(GDO). The GDO keeps track of a directory and a data
dictionary. The newAttr() GDO method adds a string to
the directory. The put() GDO method takes an attribute
name and a value, and adds that value to the data dictionary



Figure 1: Uetz Screen Yeast Interactome visualized programmatically using Mission Control. Both size and
background color (a gradient where green means low and blue means high) are patterned by node degree.
This graph was visualized and uploaded using a total of 5 operations (parse, nodeInstall, visualize, visualize,
upload) with the Mission Control package.

handled by the rest of the Mission Control system. Nodes
and Edges are constructed as subclasses of the GDO which
necessitate an ID and a source and target respectively upon
initialization.

The Graph class is a wrapper which keeps track of the
nodes and edges and contains a variety of utility functions.
Data is compiled into a Graph containing Nodes and Edges
by way of a dynamic text �le parser function. The parser
is designed to be able to handle both basic data read in
from outside sources, and read in of exported data from
working sessions of Mission Control containing user de�ned
data attributes and visual attributes. To this end, the parser
can read in a single text �le containing only edges with user-
speci�ed delimiter and header (the header may be given as
an argument in list form. It determines what columns of the
text �le are interpreted as which data attributes). It can also
read in both an edge and a node �le with multiple columns
of data and headers describing the names of the attributes.
The parser also supports a rudimentary typing system which
intelligently determines whether numeric values in a data
column should be oats or integers, and whether textual
data should be boolean, None, or string type. The parse()

function is the �rst component of the user API, as it must be
used in order to construct the Graph. The rest of the user
API is composed of methods of the Graph class, detailed as
follows. For a summary of the user API, see Table 3.

Two Graph methods control dynamic data input from
the user: nodeInstall() and edgeInstall(). The node-

Install() method takes an attribute name and a dictio-
nary whose keys are node IDs and whose values are data for
the given attribute. It then creates a corresponding entry
in each Node of the graph. This method supports intelli-
gent data read in: if the supplied dictionary for a new user-
de�ned data attribute does not contain all of the nodes in the
graph, the excluded nodes will gain the attribute with value

None. If the data attribute has already been de�ned and the
dictionary does not contain all the nodes in the graph, the
included nodes will be updated with the given values and the
excluded nodes will be left alone. Data attributes with value
None are handled gracefully by the system of default visual
attributes as will be discussed below. The edgeInstall()

method works similarly to the nodeInstall() method.
The visualize() Graph method takes the name of a data

attribute and leads the user through a rudimentary user in-
terface to determine whether the given data is continuous
or discrete, and which visual attribute that the user would
like to employ to represent the data. Continuous node data
can be visualized by GraphSpace visual attributes attributes
background_color, border_color (according to a gradi-
ent constructed out of two user-supplied RGB color vec-
tors), background_blacken, and size. Discrete node data
can be visualized by GraphSpace visual attributes back-

ground_color, border_color (colors for discrete groups can
be picked manually via user input or automatically via a
color picking function), and shape. Continuous edge data
can be visualized by line_color and width, and discretec3a



Table 1: Toy Example Node Data
Node ID Team Node Degree Random Float [0,50]
a Alice 3 16.7
b Bob 4 9.1
c Bob 3 41.4
d Alice 3 12.6
e Alice 3 30.6
f Bob 1 3.6
g Alice 1 1.29
h None 1 24.5
i None 1 1.8
j Bob 0 0.3

Table 2: Toy Example Edge Data
source target weight
b a 10
d a 5
c a 2.5
d c 1
c b 1
d b 3
e b 1
g e 7
f e 1
i h 4

tions previously created for JSON formatting and upload [1]
to push the graph to the GraphSpace server.

The export() Graph method takes two �le names and
constructs two text �les encoding the nodes and edges with
all of the currently saved data attributes. These �les can be
read by the parse() function to replicate the data attributes
of a given Mission Control session. This is done through a
line 1 header which is detected by the parser automatically.

The default() Graph method takes the name of a GraphSpace
visual attribute and a value. It then updates a dictionary
of default visual attribute values accordingly. These default
values are referenced not only when a visual attribute has
not been set, but also when a visual attribute has been set
but a particular node or edge has None for that value. This
means that a user can easily visualize discrete groups of





Table 3: Summary of the Mission Control User API
Function Name Important Arguments Description Graph Method?

parse() edge�le, node�le, delimiter
Returns properly formatted text
�le data as a Graph object

No

nodeInstall() attrName, valueDict
Assigns each value in valueDict
to data attribute attrName for nodes

Yes

edgeInstall() attrName, valueDict
Assigns each value in valueDict
to data attribute attrName for edges

Yes

visualize() attrName
Patterns a visual attribute after the
data attribute given by attrName

Yes

upload() No Arguments
Uploads the currently visualized
graph to GraphSpace

Yes

export() edge�le, node�le
Saves all data attributes from the
current session in two �les with
the given names

Yes

default() GS attr, value
Sets the default value for the given
visual attribute GS attr to the
given value

Yes

display() c
Gives a summary of the Graph with
di�erent options depending on the
control string c

Yes

remove() attrName
Removes the data attribute given
by attrName from the Graph

Yes

nodeGet() attrName
Returns the node data attribute
given by attrName in
dictionary form

Yes

edgeGet() attrName
Returns the edge data attribute
given by attrName in
dictionary form

Yes


